Utiliza este identificador para citar o vincular este elemento: http://hdl.handle.net/10553/41360
Títulos: The Poisson model limits in NBA basketball: Complexity in team sports
Autores/as: Martín-González, J.M. 
De Saá Guerra, Yves
García Manso, Juan Manuel 
Arriaza, Enrique
Valverde-Estévez, Teresa
Clasificación UNESCO: 241106 Fisiología del ejercicio
Palabras clave: Basketball
Non-linear complex systems
Poisson distribution
Power Law
Fecha de publicación: 2016
Revistas: Physica A: Statistical Mechanics and its Applications 
Resumen: Team sports are frequently studied by researchers. There is presumption that scoring in basketball is a random process and that can be described using the Poisson Model. Basketball is a collaboration-opposition sport, where the non-linear local interactions among players are reflected in the evolution of the score that ultimately determines the winner. In the NBA, the outcomes of close games are often decided in the last minute, where fouls play a main role. We examined 6130 NBA games in order to analyze the time intervals between baskets and scoring dynamics. Most numbers of baskets (n) over a time interval (Delta T) follow a Poisson distribution, but some (e.g., delta t = 10 s, n > 3) behave as a Power Law. The Poisson distribution includes most baskets in any game, in most game situations, but in close games in the last minute, the numbers of events are distributed following a Power Law. The number of events can be adjusted by a mixture of two distributions. In close games, both teams try to maintain their advantage solely in order to reach the last minute: a completely different game. For this reason, we propose to use the Poisson model as a reference. The complex dynamics will emerge from the limits of this model.
URI: http://hdl.handle.net/10553/41360
ISSN: 0378-4371
DOI: 10.1016/j.physa.2016.07.028
Aparece en la colección:Artículos

Muestra el registro completo del elemento

Vista de página(s)

actualizado el 26-nov-2018

Google ScholarTM



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor, con todos los derechos reservados, a menos que se indique lo contrario.