Utiliza este identificador para citar o vincular este elemento: http://hdl.handle.net/10553/37175
Títulos: Approaching the intra-class variability in multi-script static signature evaluation
Autores/as: Díaz Cabrera, Moisés 
Ferrer Ballester, Miguel Ángel 
Sabourin, R.
Clasificación UNESCO: 120304 Inteligencia artificial
Fecha de publicación: 2017
Resumen: As an emerging issue, multi-script signature verification is a recent challenge for current Automatic Signature Verification (ASV) systems. Relevant differences are presented in the morphology and lexicon of the signature images written in different scripts, such as used symbols, shape of the signatures, legibility, etc. These peculiarities could reduce the success of ASV systems, especially those which were originally designed for only one kind of script. However, one common feature among scripts in ASV is the fact that the greater the number of signatures that are used for training, the better the expected performance. In this work, we propose a method inspired by observations from the neuromotor equivalence theory to artificially enlarge the signature images used to train a state-of-the-art static signature classifier. Experimental results are obtained by using three static signature datasets derived from completely different scripts: Western, Bengali and Devanagari. Our results suggest that the cognitive-inspired model, which aims to duplicate static signatures, tends toward intra-class variability of signatures written in different scripts; the model's beneficial impact is seen in signature verification tests.
URI: http://hdl.handle.net/10553/37175
ISSN: 1051-4651
DOI: 10.1109/ICPR.2016.7899791
Aparece en la colección:Artículos

Muestra el registro completo del elemento

Citas SCOPUSTM   

2
actualizado el 26-nov-2018

Vista de página(s)

6
actualizado el 26-nov-2018

Google ScholarTM

Verifica

Altmetric


Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor, con todos los derechos reservados, a menos que se indique lo contrario.