Utiliza este identificador para citar o vincular este elemento: http://hdl.handle.net/10553/15077
Títulos: A performance based study on gender recognition in large datasets
Autores/as: Díaz Cabrera, Moisés 
Lorenzo Navarro, José Javier 
Castrillón-Santana, Modesto 
Clasificación UNESCO: 120304 Inteligencia artificial
Palabras clave: Gender recognition
BEFIT
Classiffier fusion
LFW
MORPH
Fecha de publicación: 2012
Resumen: Gender recognition has achieved impressive results based on the face appearance in controlled datasets. Its application in the wild and large datasets is still a challenging task for researchers. In this paper, we make use of classical techniques to analyze their performance in controlled and uncontrolled condition respectively with the LFW and MORPH datasets. For both sets the benchmarking protocol follows the 5-fold cross-validation proposed by the BEFIT challenge.
URI: http://hdl.handle.net/10553/15077
Aparece en la colección:Actas de Congresos

Archivos en este elemento:
Archivo Descripción TamañoFormato 
C080_JRBP12.pdfArtículo424,44 kBAdobe PDFObserva/Abre
Muestra el registro completo del elemento

Google ScholarTM

Verifica


Este elemento está sujeto a una licencia Licencia Creative Commons Creative Commons