Utiliza este identificador para citar o vincular este elemento: http://hdl.handle.net/10553/1247
Títulos: Estimating the monthly pCO2 distribution in the North Atlantic using a self-organizing neural network
Autores/as: Telszewski, M.
Chazottes, A.
Schuster, U.
Watson, A. J.
Moulin, C.
Bakker, D.C.E.
González-Dávila, Melchor 
Johannessen, Truls
Körtzinger, Arne
Luger, H.
Omar, Abdirahman M.
Padin, X. A.
Steinhoff, T.
Santana-Casiano, J. Magdalena 
Olsen, A.
Ríos, Aída F.
Clasificación UNESCO: Ciclo del carbono
Biogeoquímica
Atlántico Norte
Fecha de publicación: 2009
Resumen: Here we present monthly, basin-wide maps of the partial pressure of carbon dioxide (pCO2) for the North Atlantic on a 1° latitude by 1° longitude grid for years 2004 through 2006 inclusive. The maps have been computed using a neural network technique which reconstructs the non-linear relationships between three biogeochemical parameters and marine pCO2. A self organizing map (SOM) neural network has been trained using 389 000 triplets of the SeaWiFS-MODIS chlorophyll-a concentration, the NCEP/NCAR reanalysis sea surface temperature, and the FOAM mixed layer depth. The trained SOM was labelled with 137 000 underway pCO2 measurements collected in situ during 2004, 2005 and 2006 in the North Atlantic, spanning the range of 208 to 437 μatm. The root mean square error (RMSE) of the neural network fit to the data is 11.6 μatm, which equals to just above 3 per cent of an average pCO2 value in the in situ dataset. The seasonal pCO2 cycle as well as estimates of the interannual variability in the major biogeochemical provinces are presented and discussed. High resolution combined with basin-wide coverage makes the maps a useful tool for several applications such as the monitoring of basin-wide air-sea CO2 fluxes or improvement of seasonal and interannual marine CO2 cycles in future model predictions. The method itself is a valuable alternative to traditional statistical modelling techniques used in geosciences.
URI: http://hdl.handle.net/10553/1247
ISBN: 18106277
DOI: 10.5194/bg-6-1405-2009
Aparece en la colección:Artículos

Archivos en este elemento:
Archivo Descripción TamañoFormato 
5731.pdf3,19 MBAdobe PDFObserva/Abre
Muestra el registro completo del elemento

Citas SCOPUSTM   

61
actualizado el 26-nov-2018

Citas de WEB OF SCIENCETM
Citations

56
actualizado el 03-ene-2019

Google ScholarTM

Verifica

Altmetric


Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor, con todos los derechos reservados, a menos que se indique lo contrario.